Heat engine developed from single particle
نویسندگان
چکیده
منابع مشابه
Single-ion heat engine at maximum power.
We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its...
متن کاملMagnetic Quantum Otto Engine for the Single-Particle Landau Problem
We study the effect of the degeneracy factor in the energy levels of the well-known Landau problem for a magnetic quantum Otto engine. The scheme of the cycle is composed of two quantum adiabatic processes and two quantum isomagnetic processes driven by a quasi-static modulation of external magnetic field intensity. We derive the analytical expression of the relation between the magnetic field ...
متن کاملMagnetic Engine for the Single-Particle Landau Problem
We study the effect of the degeneracy factor in the energy levels of the well-known Landau problem for a magnetic engine. The scheme of the cycle is composed of two adiabatic processes and two isomagnetic processes driven by a quasi-static modulation of external magnetic field intensity. We derive the analytical expression of the relation between the magnetic field and temperature along the adi...
متن کاملA Novel Approach to the Teaching of Entropy Based on a Recent Single Particle Heat Engine Model
In a recently developed simple particle mechanics model in which a single particle represents the working fluid (gas) in a heat engine (exemplified by a piston engine) a new approach was outlined for the teaching of concepts to thermodynamic students. By mechanics reasoning a model was developed that demonstrates the connection between the Carnot efficiency limitation of heat engines and the Ke...
متن کاملA sublimation heat engine
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today
سال: 2012
ISSN: 1369-7021
DOI: 10.1016/s1369-7021(12)70013-5